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Résumé. Une n-sesquicatégorie est un ensemble n-globulaire avec des opéra-
tions de composition strictement associatives et unitaires, qui ne sont cepen-
dant pas tenues de satisfaire les lois d’échange de Godement qui s’appliquent
aux n-catégories. Dans [6], nous avons montré comment celles-ci peuvent
être dénies comme des algèbres sur une monade TDs

n dont les opérations
sont des diagrammes de cordes simples. Dans le présent article, nous donnons
une description explicite des polygraphes pour cette monade et nous prou-
vons que la catégorie associée de computades est une catégorie de préfais-
ceaux. Nous utilisons ceci pour décrire une notation de diagrammes de cordes
pour représenter des composés arbitraires dans des n-sesquicatégories. Ceci
est un pas vers une théorie des diagrammes de cordes pour les n-catégories
semistrictes.
Abstract. An n-sesquicategory is an n-globular set with strictly asso-
ciative and unital composition and whiskering operations, which are
however not required to satisfy the Godement interchange laws which
hold in n-categories. In [6] we showed how these can be dened as al-
gebras over a monad TDs

n whose operations are simple string diagrams.
In the present paper, we give an explicit description of computads for
the monad TDs

n and we prove that the category of computads for this
monad is a presheaf category. We use this to describe a string diagram
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notation for representing arbitrary composites in n-sesquicategories.
This is a step towards a theory of string diagrams for semistrict n-
categories.
Keywords. String diagrams. Higher categories. Monads. Computads.
Mathematics Subject Classication (2010). 18N20, 18N30.

1. Introduction

The use of string diagram notation as a tool for representing composites in
higher categories is becoming ever more widespread. This paper is part of
a project which aims to give a denition of semistrict n-category based on
a purely algebraic/combinatorial notion of string diagram. In [6] we de-
ned a monad TDs

n on the category of n-globular sets, whose operations
we call simple string diagrams. We give a generators and relations descrip-
tion of TDs

n , which allows us to characterize its algebras, which we call n-
sesquicategories, as n-globular sets equipped with strictly associative and
unital composition and whiskering operations, which however do not satisfy
the Godement interchange laws that hold in a strict n-category. We think of
simple string diagrams as analogous to the globular pasting diagrams used
in the denition of the monad T str

n whose algebras are strict n-categories
([28]). In the present paper we study computads for the monad TDs

n and
show how morphisms in an n-sesquicategory generated by a computad C
can be depicted as general C-labelled string diagrams. We also prove that
the category of computads for this monad is equivalent to the category of
presheaves on a small category of computadic cell shapes. In future work,
we will show how to add coherent weak interchange laws to get a notion of
semistrict n-category,

1.1 Results

We now describe the main result in this paper. Denote by Compn
n+1 the

category of (n+1)-computads for TDs

n , by the terminal (n+1)-computad
and by Fn(C) the free n-sesquicategory generated by an n-computad C.
Cells c ∈ k for k ≤ n + 1 are called k-cell shapes and morphisms d ∈
Fn( )k for k ≤ n are called unlabelled k-diagrams. A morphism x ∈
Fn(C) is said to have shape d if its image in Fn( ) is d. Given such d,
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we construct a computad d̂ with the property that d-shaped morphisms in
a computad D are in canonical bijection with maps d̂ → D. Using this,
we dene a small category Celln+1 whose objects are cell shapes, together
with a fully faithful embedding (−) : Celln+1 → Compn

n+1. From this we
construct the nerve/realization adjunction

 −  : Psh(Cellnn+1) Compn
n+1 : N

⊣ .

Theorem 1.1. The adjunction  −  : Psh(Celln+1) Compn
n+1 : N

⊣

is an equivalence of categories.

We now give an outline of the proof. In [6] we showed that TDs

n has a pre-
sentation with generators On and relations En. We can describe morphisms
in the free n-sesquicategory Fn(C) generated by an n-computad C as equiv-
alence classes of trees whose internal vertices are labelled by generators in
On and whose leaves are labelled by cells in C. The equivalence relation is
generated by the relations in En. We then prove that each of these trees has a
unique normal form in its equivalence class. This allows us to show that for
an unlabelled diagram d the category Compn

n+1(d) of pairs (C, x), where C
is an (n+1)-computad and x is a morphism of shape d, has an initial object,
which we denote (d̂, d̃). This allows us to construct the nerve/relization ad-
junction as mentioned above and then the proof of the Theorem follows by
formal arguments from the fact (ĉ, c̃) is initial, for c ∈ Celln+1.

Remark 1.2. In fact our proof of the Theorem above applies to any globular
operad presented by generators and relations, as long as this presentation
admits a theory of normal forms. See Remark 5.16 for details.

The theory of normal forms also provides an algorithm to decide whether
two morphisms in the free n-sesquicategory Fn(C) generated by C given as
composites of generating cells are actually equal.

After we’ve established this Theorem, we go on to give a description of
the diagrammatic interpretation of morphisms in the n-sesquicategory gen-
erated by C as C-labelled string diagrams. Normal forms are an essential
ingredient in this description.
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1.2 Related work

The string diagrammatic calculus for monoidal categories and bicategories
is by now well established. Generalizations to Gray 3-categories also exist,
in the theory of surface diagrams ([11], [27]). Recently there has been a lot
of progress in extending this to higher dimensions, with the discovery of the
theory of associative n-categories ([19]), later developed into the manifold
diagrams of [20]. These manifold diagrams have a combinatorial counter-
part, which the authors of [20] call trusses, which are in turn equivalent to
the notion of zigzgags introduced in [34] and which forms the basis for an
online proof assistant for diagrammatic calculus in higher categories ([1]).

There are two main differences between the approach above and the one
followed in this paper. The rst is that the input of our theory is the simple
combinatorial notion of simple string diagram introduced in [6], whereas
manifold diagrams start from the geometry and obtain from that a combina-
torial description, by passing to exit path posets. The second is that we want
to produce an algebraic notion of semistrict n-categories, by which we mean
that these will be algebras over a certain monad on n-globular sets. One ad-
vantage of the manifold diagrams approach to semistrict n-categories is that
all coherences are already encoded in the basic cell shapes, whereas we nat-
urally produce a theory of n-sesquicategories, to which we then have to add
coherent weak interchange laws. The main advantage of our approach is its
simplicity, as in a sense everything follows from the combinatorial notion of
simple string diagrams introduced in [6].

Most closely related to our work is [10]. There the authors develop a
framework which is the basis for another proof assistant for diagrammatic
calculus in higher categories ([9]). The authors have a notion of signa-
ture, which corresponds exactly to a computad for TDs

n , and a notion of
diagram over a signature, which corresponds exactly to a morphism in the
n-sesquicatery generated by a computad. In this sense, our work can also be
seen as providing a mathematical foundation for the kinds of higher categor-
ical structures implemented by this proof assistant.

Our work is also related to questions in the general theory of computads
([36], [37], [33], [14], [12], [32]). If one considers the monad T str

n whose
algebras are strict n-categories, then computads consist of presentations for
strict n-categories. Cells of dimension k ≤ n are generating k-morphisms
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and (n + 1)-cells are relations. The cells of the terminal n-computad for
T str
n are the most general n-categorical cell shapes and the morphisms in the

n-category generated by it can be thought of as general unlabelled pasting
diagrams. One would then like to say that the category of computads for T str

n

is a category of presheaves on the cell shapes, but this turns out to be false
([31], [17]), essentially because of the Eckman-Hilton argument. This lead
to the question of nding conditions on monads or restrictions on allowable
cells in the associated computads that guarantee that one obtains a presheaf
category ([13],[26],[18]). Our paper can also be seen as a continuation of
this line of research, providing a monad on n-globular sets which is related
to T str

n and whose category of computads is a presheaf category. On pasting
diagrams, see also [21].

Finally, the motivation for developing this theory was to be able to use
string diagrams to prove results about higher categories. In [3] we develop
a string diagram calculus for strict 4-categories and we use it to prove a
result about brations of mapping 4-groupoids. In [4] and [5] we use this
string diagram calculus to prove coherence results for adjunctions in 3 and
4-categories. In [2], we use a string diagram caculus for strict monoidal 3-
categories to prove a coherence result for 3-dualizable objects in strict sym-
metric monoidal 3-categories.

After the appearance of the present paper on the arXiv, an independent
proof of the fact that computads for n-sesquicategories from a presheaf cat-
egory has appered in [22]. The authors dene n-sesquicategories directly
by generating operations and relations, so their theory does not mention the
combinatorics of simple string diagrams. Their use of rewriting theory to es-
tablish the existence of normal forms is a very interesting alternative to our
methods in Section 4 of the present paper. To go from normal forms to the
main result, they then appeal to Makkai’s criterion for presheaf categories.
Our approach to this in Section 5 gives a shorter and more direct proof.

1.3 Future work

One can construct a monad T ss
n by adding (k+1)-operations (resp. relations)

to TDs

n connecting pairs of simple k-string diagrams that map to the same k-
pasting diagram under the map of monads TDs

n → T str
n , for k ≤ n− 1 (resp.

k = n). By constrution, this comes with a contractible map T ss
n → T str

n .
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In dimensions ≤ n − 1 the monad T ss
n is constructed from TDs

n by freely
adding operations, so the methods in this paper should apply to show that
the associated category of n-computads is a presheaf category (although the
category of (n+1)-computads is not, as relations between n-dimensional op-
erations are added). We can dene semistrict n-categories as T ss

n -algebras.
By construction, they will admit a string diagram calculus. Moreover, a re-
sult conjectured in [25, 6.2.3] suggests a possible way of proving that any
weak n-category is equivalent to a semistrict n-category in this sense. This
is the subject of ongoing research and we will explore it in future papers.

We are also interested in nding nite descriptions of T ss
n . In an upcom-

ing paper, we show how to construct T ss
3 by adding a nite set of generators

and relations to the monad TDs

3 . We then show that its algebras agree with
Gray 3-categories. We are working on extending this to dimension 4.

Once the denitions of semistrict 3 and 4-categories are in place, we can
extend the coherence results for adjunctions of [4] and [5] to this setting. We
will then put this together to extend the coherence result for 3-dualizable ob-
jects of [2] to this setting. An extension of this result to the fully weak setting
would give a nite presentation of the framed fully extended 3-dimensional
bordism category, by the Cobordism Hypothesis ([8],[29],[7],[23]).

2. Background

Denote by gSetn the category of n-globular sets. Given a nitary monad
T : gSetn → gSetn one can dene categories CompT

k of computads for T ,
for k = 0, · · · , n+ 1, together with adjunctions

Fk : CompT
k AlgT : Vk.

⊣

This is done inductively, by dening a k-computadC to be a tuple (Ck, C≤k−1, s, t)
where Ck is a set, which we call the set of k-cells of C, C≤k−1 is a (k − 1)-
computad, and s, t : Ck → Fk−1(C≤k−1)k−1 satisfy the globularity relations
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ss = st and ts = tt. One then denes Fk, for k ≤ n, by the pushout

TDs

n (Ck × ∂θ(k)) TDs

n (Ck × θ(k))

Fk−1(C≤k−1) Fk(C),

⌜

where θ(k) is the globular set represented by k. For k = n + 1, we replace
the inclusion ∂θ(k) → θ(k) by the collpase ∂θ(n+1) → θ(n). Similarly, one
denes Vk by a pullback. See [35] for a detailed exposition of this theory of
computads (for the original references, see [36], [37], [33], [14] and [12]).

Remark 2.1. There are incusion maps CompT
k → CompT

k+1 for k ≤ n,
so we can think of k-computads as (n + 1)-computads. For this reason, we
sometimes write CompT instead of CompT

n+1 and use the term computad to
refer to an (n+ 1)-computad.

In [6] we introduced a monad TDs

n on globular sets, based on a notion
of simple string diagram and we dened an n-sesquicategory as an al-
gebra over this monad. The is a map TDs

n → T str
n to the monad for strict

n-categories, so any strict n-category is an n-sesquicategory. In fact n-
sesquicategories are just strict n-categories without the interchange laws.

Notation 2.2. We denote by Sesqn the category of TDs

n -algebras.

In [6] we gave a presentation of TDs

n by generators On and relations
En. There we think of the generators as simple string diagrams, but here
we interact with the monad TDs

n only through this presentation, so we may
as well view the generators as symbols. There is a generator ◦i,j for each
i, j = 1, · · · , n and a generator ui for each i = 1, · · · , n. Given an n-
sesquicategory C, the generator ◦i,j induces a map ◦Ci,j : Ci ×Cm Cj → CM ,
where m = mini, j and M = maxi, j. We call this composition
when i = j and whiskering when i ̸= j. The generator ui induces a map
uC
i : Ci−1 → Ci and we call uC

i (x) the identity on x. The relations in En
essentially express the associativity and unitality of ◦i,j (these relations also
appear below Denition 3.8).

Notation 2.3. We denote by On and En the sets of generators and relations
for TDs

n introduced in [6] and described in the preceding paragraph.

117



M. ARAÚJO STRING DIAGRAMS FOR n-SESQUICATEGORIES

Remark 2.4. The monad TDs

n corresponds to an n-globular operad Ds
n and

the presentation by generators and relations corresponds to a presentation of
the globular operad in the sense of [24].

We also characterize n-sesquicategories inductively as categories C equipped
with a lift of the Hom functor

Sesqn−1

=

(−)0

$$

Cop × C

HomC
99

HomC
// Set,

but this will not be relevant in the present paper.
We now briey review the generators and relations description of TDs

n ,
which our description of computads in the present paper will build on. This
discussion will be informal, see [6] for details.

Denition 2.5. LetX be an n-graded set. A k-dimensional (On, X)-labelled
tree is a rooted tree T , together with

1. a labelling of its internal vertices I(T ) by generators in On;

2. a labelling of its leaves L(T ) by elements in X;

3. a bijection between the incoming edges at an internal vertex and the
inputs of the associated generator;

such that

1. the root label has dimension k;

2. the source of each incoming edge at an internal vertex has a label of
the appropriate dimension.

We denote the set of k-dimensional (On, X)-labeled trees byTreeOn (X)(k)
or TreeOn (X)k.

118



M. ARAÚJO STRING DIAGRAMS FOR n-SESQUICATEGORIES

Terminology 2.6. An (On, X)-labelled subtree (or simply subtree for short)
of an (On, X)-labelled tree T consists of all vertices (internal and leaves) that
can be reached from a chosen internal vertex of T (the root of the subtree)
by travelling towards the leaves.

An On-labelled tree is a tree with a labelling of its vertices by On. An
On-labelled subtree of an (On, X)-labelled tree T is a subtree of T in the
usual sense, containing no leaves and inheriting the On-labelling.

When X is an n-globular set, we can dene source and target maps
s, t : TreeOn (X)k → TreeOn (X)k−1, although in general they won’t satisfy
the globularity relation.

Denition 2.7. An n-preglobular set is an n-graded set X =
n

i=0 Xi

equipped with source and target maps s, t : Xk → Xk−1. A globular re-
lation on X is a relation ∼ such that

1. if x ∼ x̃ then s(x) ∼ s(x̃) and t(x) ∼ t(x̃);

2. ss(x) ∼ st(x) and ts(x) ∼ tt(x).

Note that this means the quotient X/∼ is an n-globular set.

So given an n-globular set X , we have an n-preglobular set TreeOn (X).

Denition 2.8. We dene an n-preglobular subset TreeO,E
n (X) ⊂ TreeOn (X)

of ϵ
=-compatible trees, equipped with a preglobular relation ϵ

=. The deni-
tion is by induction on height. The relation ϵ

= is generated by the relations
in En. A tree is ϵ

=-compatible if for every subtree of the form x → ◦i,j ← y

we have si−m+1(x)
ϵ
= tj−m+1(y), where m = mini, j.

Finally we dene TreeO,E
n (X) := TreeO,E

n (X)/
ϵ
= and we show that this

denes a monad on n-globular sets. We construct a map of monads

φ : TreeO,E
n → TDs

n .

Each generator inOn corresponds to a simple string diagram, so one can use
composition of simple string diagrams to produce this map.

Theorem 2.9 ([6]). The map φ : TreeO,E
n → TDs

n is an isomorphism of
monads.
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3. Computads for TDs

n

We give an explicit description of computads for TDs

n and of the n-sesquicategories
generated by them, which we will later show is equivalent to the notion de-
scribed in the previous section. We will simply call them computads, leaving
the monad TDs

n implicit.

Denition 3.1. Given k ≤ n + 1, an (n, k)-precomputad (or simply k-
precomputad, leaving n implicit) C consists of sets Ci for 0 ≤ i ≤ k,
together with maps s, t : Ci → TreeOn (C≤i−1)i−1 for 1 ≤ i ≤ k.

In the denition below we use the following notation for grafting of trees.

Notation 3.2. Given and (On, C)-labelled tree x ∈ TreeOn (C)i−1 we denote
by

x → ui

the (On, C)-labelled tree obtained by adding a new new vertex to x labelled
by ui and an edge from the root of x to this new vertex. The new vertex
now becomes the root of this new tree. Similarly, given x ∈ TreeOn (C)i and
y ∈ TreeOn (C)j we denote by

x → ◦i,j ← y

the (On, C)-labelled tree obtained by adding a new root labelled by ◦i,j .
Denition 3.3. Given a k-precomputad C, we dene source and target maps
s, t : TreeOn (C)i → TreeOn (C)i−1, for 1 ≤ i ≤ n. For trees of height zero,
these are the maps s, t : Ci → TreeOn (C)i−1. For trees of nonzero height,
we use the following inductive formulas for s, where j < i and x and y are
trees with appropriate dimensions in each case. The map t is dened by the
same formulas, replacing every instance of s with t.

s(x → ui) = x;

s(x → ◦i,i ← y) = s(y);

s(x → ◦j,i ← y) = x → ◦j,i−1 ← s(y);

s(x → ◦i,j ← y) = s(x) → ◦i−1,j ← y.
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Remark 3.4. Since the source or target of a k-cell may be an arbitrary
(On, C)-labelled tree, the source and target maps above can increase the
height of trees. This is in contrast to the situation of [6], where we consid-
ered TreeOn (X) for a globular set X . However, these maps always decrease
the dimension of the tree, so the arguments in [6] which relied on induc-
tion on the height of the tree can now be replaced by simultaneous induction
on both the height and the dimension of the tree, as we will do below in
Denition 3.8.

The following denitions refer to each other and should be interpreted
by mutual induction.

Denition 3.5. Given k ≤ n+1, an (n, k)-computad (or simply k-computad,
leaving n implicit) C consists of sets Ci for 0 ≤ i ≤ k, together with maps
s, t : Ci → TreeO,E

n (C≤i−1)i−1 for 1 ≤ i ≤ k, such that ss(x) ϵ
= st(x) and

ts(x)
ϵ
= tt(x) for all x ∈ Ci.

Terminology 3.6. A computad is an (n, k)-computad, where n is usually
implicit in the context and k ≤ n+ 1 is arbitrary.

Notation 3.7. Let X be an n-graded set. We denote by

τ≤h Tree
O
n (X) ⊂ TreeOn (X)

the n-graded subset consisting of trees of height at most h.

The denition that follows is almost identical to the analogous one in [6].
The only difference is the one explained in Remark 3.4.

Denition 3.8. Let C be a computad. For each k, we dene, by induction
on h, subsets τ≤h Tree

O,E
n (C)k ⊂ τ≤h Tree

O
n (C)k equipped with a relation

ϵ
=h. Elements in τ≤h Tree

O,E
n (C)k are called

ϵ
=h−1-compatible. We say that

x ∈ TreeOn (C)k is
ϵ
=-compatible if it is ϵ

=h-compatible for some h and dene
TreeO,E

n (C)k ⊂ TreeOn (C)k the set of ϵ
=-compatible elements. Finally, we

dene the relation ϵ
= on TreeO,E

n (C)k by declaring x
ϵ
= x̃ when x

ϵ
=h x̃ for

some h. The denition is by overall induction on k and is presented below.

When h = 0, we let τ≤0 Tree
O,E
n (C)k := τ≤0 Tree

O
n (C)k = Ck and the

relation ϵ
=0 is =.
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Now consider h ≥ 1. Any x ∈ τ≤h Tree
O
n (C)k of height zero is ϵ

=h−1-
compatible. Let x ∈ τ≤h−1 Tree

O
n (C)i, y ∈ τ≤h−1 Tree

O
n (C)j and m =

mini, j. Then
◦i,j

x

==

y

aa

is ϵ
=h−1-compatible if and only if x, y are ϵ

=h−2-compatible and si−m+1(x)
ϵ
=

tj−m+1(y). Moreover, x → ui+1 is
ϵ
=h−1-compatible if and only if x is ϵ

=h−2-
compatible. Nowwemust dene the globular relation ϵ

=h on τ≤h Tree
O,E
n (C)k.

If x, y ∈ τ≤h Tree
O,E
n (C)k have height zero and x

ϵ
=0 y, then x

ϵ
=h y.

Let i ≤ k, x ∈ τ≤h−2 Tree
O,E
n (C)i−1, y ∈ τ≤h−1 Tree

O,E
n (C)k. If x ϵ

=
tk−i+1(y), then

(λi,k) :

◦i,k

ui

<<

y

aa

x

OO

ϵ
=h y.

Let i ≤ k, x ∈ τ≤h−1 Tree
O,E
n (C)k, y ∈ τ≤h−2 Tree

O,E
n (C)i−1. If sk−i+1(x)

ϵ
=

y, then

(ρk,i) :

◦k,i

x

==

ui

bb

y

OO

ϵ
=h x.

Let i < k, x ∈ τ≤h−2 Tree
O,E
n (C)i, y ∈ τ≤h−2 Tree

O,E
n (C)k−1. If s(x)

ϵ
=

tk−i(y), then

(ρi,k) :

◦i,k

x

==

uk

bb

y

OO

ϵ
=h

uk

◦i,k−1

OO

x

;;

y

cc
.

Let i < k, x ∈ τ≤h−2 Tree
O,E
n (C)k−1, y ∈ τ≤h−2 Tree

O,E
n (C)i. If sk−i(x)

ϵ
=

t(y), then
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(λk,i) :

◦k,i

uk

<<

y

aa

x

OO

ϵ
=h

uk

◦k−1,i

OO

x

;;

y

cc
.

Let k ≥ 1 and x, y, z ∈ τ≤h−2 Tree
O,E
n (C)k. If s(x)

ϵ
= t(y) and s(y)

ϵ
=

t(z), then

(◦k,k,k) :

◦k,k

◦k,k
;;

z

aa

x

==

y

cc

ϵ
=h

◦k,k

x

==

◦k,k
cc

y

;;

z

aa
.

Let i < k, x, y ∈ τ≤h−2 Tree
O,E
n (C)i, z ∈ τ≤h−2 Tree

O,E
n (C)k. If s(x)

ϵ
=

t(y) and s(y)
ϵ
= tk−i+1(z), then

(◦i,i,k) :

◦i,k

◦i,i
<<

z

``

x

>>

y

cc

ϵ
=h

◦i,k

x

==

◦i,k
cc

y

;;

z

aa
.

Let i < k, x, z ∈ τ≤h−2 Tree
O,E
n (C)i, y ∈ τ≤h−2 Tree

O,E
n (C)k. If s(x)

ϵ
=

tk−i+1(y) and sk−i+1(y)
ϵ
= t(z), then

(◦i,k,i) :

◦k,i

◦i,k
;;

z

``

x

==

y

cc

ϵ
=h

◦i,k

x

==

◦k,i
cc

y

;;

z

aa
.

Let i < k, x ∈ τ≤h−2 Tree
O,E
n (C)k, y, z ∈ τ≤h−2 Tree

O,E
n (C)i. If sk−i+1(x)

ϵ
=

t(y) and s(y) ϵ
= t(z), then

(◦k,i,i) :

◦k,i

◦k,i
;;

z

``

x

==

y

cc

ϵ
=h

◦k,i

x

==

◦i,i
bb

y

;;

z

``
.
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Let i < k, x ∈ τ≤h−2 Tree
O,E
n (C)i, y, z ∈ τ≤h−2 Tree

O,E
n (C)k. If s(x)

ϵ
=

tk−i+1(y) and s(y) ϵ
= t(z), then

(◦i,k,k) :

◦i,k

x

==

◦k,k
cc

y

;;

z

aa

ϵ
=h

◦k,k

◦i,k
;;

◦i,k
cc

x

==

y x

cc ;;

z

aa
.

Let i < k, x, y ∈ τ≤h−2 Tree
O,E
n (C)k, z ∈ τ≤h−2 Tree

O,E
n (C)i. If s(x)

ϵ
=

t(y) and sk−i+1(y)
ϵ
= t(z), then

(◦k,k,i) :

◦k,i

◦k,k
;;

z

``

x

==

y

cc

ϵ
=h

◦k,k

◦k,i
;;

◦k,i
cc

x

==

z y

cc ;;

z

aa
.

Let i < j < k and take x ∈ τ≤h−2 Tree
O,E
n (C)i, y ∈ τ≤h−2 Tree

O,E
n (C)j

and z ∈ τ≤h−2 Tree
O,E
n (C)k. If s(x)

ϵ
= tj−i+1(y) and s(y)

ϵ
= tk−j+1(z), then

(◦i,j,k) :

◦i,k

x

==

◦j,k
cc

y

;;

z

aa

ϵ
=h

◦j,k

◦i,j
;;

◦i,k
cc

x

==

y x

cc ;;

z

aa
.

Let i < j < k and take x ∈ τ≤h−2 Tree
O,E
n (C)i, y ∈ τ≤h−2 Tree

O,E
n (C)k

and z ∈ τ≤h−2 Tree
O,E
n (C)j . If s(x)

ϵ
= tk−i+1(y) and sk−j+1(y)

ϵ
= t(z), then

(◦i,k,j) :

◦i,k

x

==

◦k,j
cc

y

;;

z

aa

ϵ
=h

◦k,j

◦i,k
;;

◦i,j
cc

x

==

y x

cc ;;

z

aa
.

Let i < j < k and take x ∈ τ≤h−2 Tree
O,E
n (C)j , y ∈ τ≤h−2 Tree

O,E
n (C)k

and z ∈ τ≤h−2 Tree
O,E
n (C)i. If s(x)

ϵ
= tk−j+1(y) and sk−i+1(y)

ϵ
= t(z), then
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(◦j,k,i) :

◦k,i

◦j,k
;;

z

``

x

==

y

cc

ϵ
=h

◦j,k

◦j,i
<<

◦k,i
cc

x

==

z y

cc ;;

z

aa
.

Let i < j < k and take x ∈ τ≤h−2 Tree
O,E
n (C)k, y ∈ τ≤h−2 Tree

O,E
n (C)j

and z ∈ τ≤h−2 Tree
O,E
n (C)i. If sk−j+1(x)

ϵ
= t(y) and sj−i+1(y)

ϵ
= t(z), then

(◦k,j,i) :

◦k,i

◦k,j
;;

z

``

x

==

y

cc

ϵ
=h

◦k,j

◦k,i
;;

◦j,i
cc

x

==

z y

cc ;;

z

``
.

Let x, x̃ ∈ τ≤h−1 Tree
O,E
n (C)k−1. If x

ϵ
=h−1 x̃, then

(uk) :
uk

x

OO ϵ
=h

uk

x̃

OO
.

Let x, x̃ ∈ τ≤h−1 Tree
O,E
n (C)i, y, ỹ ∈ τ≤h−1 Tree

O,E
n (C)j and m =

mini, j. If x ϵ
=h−1 x̃, y

ϵ
=h−1 ỹ, si−m+1(x)

ϵ
= tj−m+1(y) and si−m+1(x̃)

ϵ
=

tj−m+1(ỹ) then

(◦i,j) :
◦i,j

x

==

y

aa ϵ
=h

◦i,j

x̃

>>

ỹ

``

.

Lemma 3.9. The construction above denes an n-preglobular subsetTreeO,E
n (C) ⊂

TreeOn (C) with a globular relation ϵ
=, meaning we have

1. if x ∈ TreeOn (C) is ϵ
=-compatible, then so are s(x) and t(x);

2. if x ϵ
= x̃ then s(x) ϵ

= s(x̃) and t(x) ϵ
= t(x̃);

3. if x is ϵ
=-compatible, then ss(x) ϵ

= st(x) and ts(x)
ϵ
= tt(x).

Proof. The proof is very similar to the one for the analogous result in [6],
the only difference being the one already mentioned in Remark 3.4.
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Denition 3.10. Let 0 ≤ k ≤ n and let C be a k-computad. We write

Tree
O,E
n (C) := TreeO,E

n (C)/
ϵ
= .

Denition 3.11. Let C be an (n+ 1)-computad. We dene a relation
ϵ,C
= on

TreeO,E
n (C) by adding the new equation s(x)

ϵ,C
= t(x) for each x ∈ Cn+1.

Lemma 3.12. Let C be an (n+1)-computad. Then
ϵ,C
= is a globular relation

on TreeO,E
n (C).

Proof. This is easy to check.

Denition 3.13. Let C be an (n+ 1)-computad. We write

Tree
O,E
n (C) := TreeO,E

n (C)/
ϵ,C
= .

Remark 3.14. The fact that ϵ
= and ϵ,C

= are globular relations impliesTree
O,E
n (C)

is an n-globular set. Using the isomorphism of monads TreeO,E
n → TDs

n al-
lows us to dene a TDs

n action on Tree
O,E
n (C) by simply grafting trees. We

refer to Tree
O,E
n (C) as the n-sesquicategory presented by C. When C is

an n-computad this is a free n-sesquicategory. When C is an (n + 1)-
computad, this is a quotient of the free n-sesquicaegory generated by C≤n

by the relations in Cn+1.

Denition 3.15. Given k-computads C,D a map f : C → D is a collection
of maps fi : Ci → Di such that s(fi(x))

ϵ
= fi−1(s(x)) and t(fi(x))

ϵ
=

fi−1(t(x)) for all x ∈ Ci, where we have inductively used the map on trees
induced by a map of (k − 1)-computads.

A map f : C → D induces a map f : TreeO,E
n (C) → TreeO,E

n (D) by
applying f to leaf labels.

Denition 3.16. For k ≤ n+1, we denote by Compn
k the category of (n, k)-

computads and (n, k)-computad maps.

Remark 3.17. Adding empty sets of cells provides an inclusion map

Compn
k → Compn

k+1,
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for k ≤ n, so we can think of k-computads as (n + 1)-computads. For
this reason, we sometimes write Compn instead of Compn

n+1 and refer to
(n + 1)-computads simply as computads. In fact we will ususally denote
this category simply by Comp, leaving n implicit.

Lemma 3.18. LetC be a computad. Then the following diagram is a pushout,
for k ≤ n.

TDs

n (Ck × ∂θ(k)) TDs

n (Ck × θ(k))

Tree
O,E
n (C≤k−1) Tree

O,E
n (C≤k)

⌜

Proof. We must show that functors

φ≤k : Tree
O,E
n (C≤k) → C

correspond to pairs (φ≤k−1,φk), where φ≤k−1 : Tree
O,E
n (C≤k−1) → C is a

functor and φk : Ck → Ck is a map, such that φ≤k−1(s(x)) = s(φk(x)) and
φ≤k−1(t(x)) = t(φk(x)) for all x ∈ Ck. This is clear.

Lemma 3.19. LetC be a computad. Then the following diagram is a pushout.

TDs

n (Cn+1 × ∂θ(n+1)) TDs

n (Cn+1 × θ(n))

Tree
O,E
n (C≤n) Tree

O,E
n (C)

⌜

Proof. We must show that functors

φ : Tree
O,E
n (C) → C

correspond to functors φ≤n : Tree
O,E
n (C≤n) → C such that φ≤n(s(x)) =

φ≤n(t(x)) for all x ∈ Cn+1. This is clear.
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Proposition 3.20. For k ≤ n + 1, the canonical map Compn
k → Comp

TDs
n

k

is an equivalence of categories, and the following diagram commutes up to
canonical natural isomorphism.

Compn
k Comp

TDs
n

k

Sesqn
Tree

O,E
n

Fk

≃

Proof. Using induction on k and Lemmas 3.18 and 3.19 we get a canonical
map

Compn
k → Comp

TDs
n

k

such that the above diagram commutes up to canonical natural isomorphism.
To construct an inverse, given a computad C ∈ Comp

TDs
n

k and using
induction on k one can view its source and target maps as

s, t : Ci → Tree
O,E
n (C≤i−1)i−1

for i ≤ k. Using the axiom of choice to obtain a section

Tree
O,E
n (C≤i−1)i−1 → TreeO,E

n (C≤i−1)i−1

of the quotient map, we nally obtain maps s, t : Ci → TreeO.E
n (C≤i−1)i−1

as in Denition 3.1.

Remark 3.21. One can avoid using the axiom of choice by using instead
normal forms, which give an explicit unique representative of each equiva-
lence class in Tree

O,E
n (C).

4. Normal form

In this section, given an n-computad C, we introduce the notion of normal
form for elements of TreeO,E

n (C). Denoting by N(C) ⊂ TreeO,E
n (C) the

n-graded subset of elements in normal form, we prove that for any x ∈
TreeO,E

n (C) there exists a unique n(x) ∈ N(C) such that n(x) ϵ
= x.
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Remark 4.1. The proof below actually gives an algorithm for nding the
normal form n(x) associated to any term x ∈ TreeO,E

n (C). Thus it gives an
algorithm for deciding whether two such terms are equivalent.

Remark 4.2. If C is an (n + 1)-computad, every term x ∈ TreeO,E
n (C)

still has a unique normal form n(x)
ϵ
= x. However, any nontrivial relation

in Cn+1 will provide terms x, y such that x ϵ,C
= y and n(x) ̸= n(y) (recall

Denition 3.11). So normal forms apply most naturally to n-computads.

Notation 4.3. We write m(◦i,j) := mini, j. When v is an internal vertex
in an (On, C)-labelled tree with label ◦i,j , we write m(v) = m(◦i,j).

Denition 4.4. An x ∈ TreeOn (C) ism-ordered if for every edge of the form
v → w, where v, w are ◦-labelled, we have m(v) < m(w).

Denition 4.5. An On-labelled tree ism-constant if there are no u-labelled
vertices and for every edge v → w we havem(v) = m(w).

Denition 4.6. An m-constant component of x ∈ TreeOn (C) is a maximal
m-constant On-labelled subtree.

Denition 4.7. An m-constant On-labelled tree is in normal form if it is of
one of the following forms:

1.

◦i,k
· · ·

gg

◦i,k
gg

◦k,i
ff

· · ·
77

◦k,i
77

with i < k;

2.
◦k,k

· · ·
77

◦k,k
77 .

Denition 4.8. An x ∈ TreeOn (C) is in normal form if it is m-ordered, it
contains no edges of the form u → ◦ and each of itsm-constant components
is in normal form.
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Denition 4.9. Let x ∈ TreeOn (C). Dene its cell dimension to be the max-
imum of the dimensions of the cells labelling the leaves of x. Denote this by
cd(x).

Lemma 4.10. Let x, x̃ ∈ TreeO,E
n (C) and suppose x

ϵ
= x̃. Then cd(x) =

cd(x̃).

Proof. This is clear.

Lemma 4.11. Given x ∈ TreeO,E
n (C), there exists n(x) ϵ

= x which is in
normal form.

Proof. One uses the dening equations of ϵ
= to rearrange generators. The

(λ) and (ρ) relations allow us eliminate all units ui for i ≤ cd(x) and push
the other units towards the root. Then the (◦) relations allow us to pass to
an m-ordered tree and nally to put each m-constant component in normal
form.

Now we need to show that this normal form is unique.

Proposition 4.12. Let x, x̃ ∈ TreeO,E
n (C) be in normal form and suppose

x
ϵ
= x̃. Then x = x̃.

We will prove this below. First we reduce to diagrams without u-labelled
vertices.

Lemma 4.13. Let x, x̃ ∈ TreeO,E
n (C)k be in normal form and suppose x ϵ

=
x̃. Let cd := cd(x) = cd(x̃). Then x = (x◦ → ucd+1 → · · · → uk) and
x̃ = (x̃◦ → ucd+1 → · · · → uk), where x◦ and x̃◦ are in normal form, have
no u-labelled vertices and x◦

ϵ
= x̃◦.

Proof. It is obvious that one can decompose elements in normal form into a
unit chain and a component containing no units. The only thing that requires
proof is the fact that x◦

ϵ
= x̃◦. This follows from the observation that x◦ =

sk−cd(x) and x̃◦ = sk−cd(x̃).

The above Lemma allows us to reduce the proof of Proposition 4.12 to
the case where x, x̃ have no units. Now we would like to reduce to the case
where one gets from x to x̃ without introducing units along the way.
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Denition 4.14. Dene TreeO(◦)
n (C) ⊂ TreeOn (C) to be the preglobular sub-

set consisting of those trees not containing any u-labelled vertices. We then
dene a preglobular subsetTreeO(◦),E(◦)

n (C) ⊂ TreeO(◦)
n (C) of ◦

=-compatible
trees with a globular relation ◦

=, in exactly the same way we dened ϵ
= and

ϵ
=-compatibility, except we omit all equations involving u.

Denition 4.15. We dene the reduction r(x) ∈ TreeO(◦)
n of x ∈ TreeOn (C)

inductively, as follows. We let r(x) = x when x has height zero. Then, for
i < k, we let r(x → uk) = ∅ and

r(x → ◦k,k ← y) =





r(y) r(x) = ∅;
r(x) r(y) = ∅;
r(x) → ◦k,k ← r(y) otherwise;

r(x → ◦i,k ← y) =





r(y) r(x) = ∅;
∅ r(y) = ∅;
r(x) → ◦i,k ← r(y) otherwise;

r(x → ◦k,i ← y) =





r(x) r(y) = ∅;
∅ r(x) = ∅;
r(x) → ◦k,i ← r(y) otherwise.

Lemma 4.16. If x ∈ TreeO(◦)
n , then r(x) = x.

Proof. This is obvious.

Lemma 4.17. If w ∈ TreeO,E
n (C) and r(w) = ∅ then s(w) ϵ

= t(w).

Proof. The proof is by induction on the height of w. There are four cases,
corresponding to the four possible root labels: uk, ◦k,k, ◦i,k and ◦k,i, for
i < k. Each of these follows by a simple argument.

Lemma 4.18. Given w, w̃ ∈ TreeO,E
n (C), we have

1. r(w) ∈ TreeO(◦),E(◦)
n (C);

2. if r(w) ̸= ∅, then sr(w)
◦
= rs(w) and tr(w)

◦
= rt(w);
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3. if w ϵ
= w̃, then r(w) ◦

= r(w̃).

Proof. The proof is by mutual induction on dimension and height. For 1.
there is a case for each possible root label of w: uk, ◦k,k, ◦i,k and ◦k,i (i < k).
Each of these follows from a simple inductive argument.

For 2. there are cases for root labels uk, ◦k,k, ◦k−1,k, ◦k,k−1, ◦i,k and ◦k,i
(i < k − 1). We explain the ◦k,k case and leave the others to the reader. Let
w = (x → ◦k,k ← y). Now

sr(w) =


sr(x) r(y) = ∅
sr(y) r(y) ̸= ∅

and rs(w) = rs(y). If r(y) ̸= ∅, we have rs(y) ◦
= sr(y) by induction, so

rs(w)
◦
= sr(w). When r(y) = ∅, we need to show that sr(x) ◦

= rs(y). We
have r(x) ̸= ∅, because r(w) ̸= ∅. Then sr(x)

◦
= rs(x) by induction. We

also have s(y) ϵ
= t(y) by Lemma 4.17. Since w is ϵ

=-compatible, we have
s(x)

ϵ
= t(y), so we have s(x) ϵ

= s(y) and then using 3. by induction we have
rs(x)

◦
= rs(y), so sr(x) ◦

= rs(y).
To prove 3., there is one case for each of the dening equations of ϵ

=.
We explain the (◦k,k,k) case, leaving the others to the reader. Let w and w̃
be the left and right hand sides of this equation, respectively. If at least one
of the trees r(x), r(y), r(z) is empty, then we get r(w) = r(w̃) and we
are done. So we may assume they are all nonempty. In this case we get
r(w)

◦
= r(w̃) by the same (◦k,k,k) equation, as long as r(x), r(y), r(z) are

◦
=-compatible, sr(x) ◦

= tr(y) and sr(y) ◦
= tr(z). This rst condition follows

from 1. by induction on height. The second condition follows from 2. and
3. by induction on height and dimension.

Notation 4.19. Given x ∈ TreeOn (C), we denote by L(x) its set of leaves.
Given ℓ ∈ L(x), we denote by ℓ the dimension of the cell labellng ℓ. We
denote by L≥i(x) ⊂ L(x) the set of leaves ℓ such that ℓ ≥ i.

Denition 4.20. Given x ∈ TreeO(◦)
n (C), we dene M(x) = maxj :

L≥j(x) ≥ 2. If x only has one leaf, then M(x) = −∞.

Lemma 4.21. If x ◦
= x̃, then M(x) = M(x̃).
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Proof. One just needs to check that this holds for each of the dening equa-
tions of ◦

=, which is easy.

Denition 4.22. Given w ∈ TreeOn (C), we dene a linear ordering of L(w)
as follows. When w = (x → uk) then L(w) = L(x) and we can just use
induction on height. When w = (x → ◦i,j ← y) then L(w) = L(x)


L(y)

and we dene the linear order on L(w) by using the linear orders on L(x)
and L(y) provided by induction on height, together with the rule that ℓx > ℓy
for any ℓx ∈ L(x) and ℓy ∈ L(y).

Lemma 4.23. Let w, w̃ ∈ TreeO(◦),E(◦)
n (C) and suppose w ◦

= w̃. Let M :=
M(w) = M(w̃). Then there is a (necessarily unique) order preserving iso-
morphism L≥M(w) → L≥M(w̃).

Proof. One just needs to check this for each of the equations dening ◦
=.

The only equations requring some consideration are (◦i,k,k), (◦k,k,i), (◦i,j,k),
(◦i,k,j), (◦j,k,i) and (◦k,j,i), which double some of the leaves. In each case,
one can see that this doubling does not affect leaves in L≥M . For example,
the (◦i,k,k) equation doubles the leaves in the subtree x. But since we have
no u-labelled vertices, the subtrees y and z must both have at least one leaf
labelled by a k-cell, so that w must have at least two leaves labelled by k-
cells, so that M = k. Then i < k implies i < M , so there are no leaves
labelled by cells of dimension ≥ M in x.

Denition 4.24. Let w ∈ TreeO(◦),E(◦)
n (C)k, let M(w) ≤ M ≤ k, and let

ℓ ∈ L≥M(w). We dene σM
ℓ (w) ∈ TreeO(◦)

n (C)|ℓ| by induction on height as
follows. If w has height zero, then it consists of a single leaf ℓ, and we let

σM
ℓ (ℓ) = ℓ.

If w has nonzero height, then we have a case for each possible root label.
For p, q ∈ M, k (with at least one equal to k) and i < M , we let

σM
ℓ (x → ◦p,q ← y) =


σM
ℓ (x), ℓ ∈ L(x);

σM
ℓ (y), ℓ ∈ L(y);

σM
ℓ (x → ◦i,k ← y) = (x → ◦i,|ℓ| ← σM

ℓ (y));
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σM
ℓ (x → ◦k,i ← y) = (σM

ℓ (x) → ◦|ℓ|,i ← y).

Lemma 4.25. Let w ∈ TreeO(◦),E(◦)
n (C)k, let M(w) ≤ M ≤ k and let

ℓ ∈ L≥M(w). Then

1. σM
ℓ (w) is ◦

=-compatible;

2. s|ℓ|−i+1(σM
ℓ (w))

◦
= sk−i+1(w) and t|ℓ|−i+1(σM

ℓ (w))
◦
= tk−i+1(w) for

i < M ;

3. if w ◦
= w̃ and ℓ̃ ∈ L≥M(w̃) is the image of ℓ, then σM

ℓ (w)
◦
= σM

ℓ̃
(w̃).

Proof. The proof is by mutual induction on the height of w. One proves
1. easily by splitting into the cases wich appear in the denition of σM

ℓ and
using 2. on trees of smaller height.

To prove 2., we again split into the cases appearing in the denition of
σM
ℓ . We explain only the case w = (x → ◦p,q ← y), as the others are

simpler. We also do only s, as t is completely analogous. So we compute

s|ℓ|−i+1(σM
ℓ (x → ◦p,q ← y)) =


s|ℓ|−i+1(σM

ℓ (x)), ℓ ∈ L(x)

s|ℓ|−i+1(σM
ℓ (y)), ℓ ∈ L(y)

◦
=


sp−i+1(x), ℓ ∈ L(x)

sq−i+1(y), ℓ ∈ L(y),

where we used induction. On the other hand

sk−i+1(x → ◦p,q ← y) = sq−i+1(y).

Now recall that ◦
= is a globular relation, so ss

◦
= st. Moreover, we have

sp−m+1(x)
◦
= tq−m+1(y), wherem = minp, q, becausew is ◦

=-compatible.
This allows us to compute

sp−i+1(x) = sm−isp−m+1(x)
◦
= sm−itq−m+1(y)

◦
= sm−isq−m+1(y)

◦
= sq−i+1(y)

so we are done.
For 3. there is one case for each of the dening equations of ◦

=. The
arguments are simple in every case, so we leave them to the reader.
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Denition 4.26. Let w ∈ TreeO(◦),E(◦)
n (C). We dene σℓ(w) := σ

M(w)
ℓ (w).

Denition 4.27. Let x ∈ TreeO(◦)
n (C). We dene

H(x) = m(v) : v ∈ I(T ).

Lemma 4.28. Let x, x̃ ∈ TreeO(◦),E(◦)
n (C) and suppose x ◦

= x̃. Then

H(x) = H(x̃).

Proof. One checks this is true for each of the equations dening ◦
=, which is

easy.

Lemma 4.29. Let x, x̃ ∈ TreeO(◦),E(◦)
n (C) be in normal form and suppose

x
◦
= x̃. Then x = x̃.

Proof. The proof is by induction on H := H(x) = H(x̃). If H = 0, then x,
x̃ both have height zero, so they must be equal as the relation ◦

= is just = on
elements of height zero.

Now suppose H ≥ 1 and let l = L≥M(x) = L≥M(x̃). Then x, x̃ each
consist of a maximal m-constant component containing the root, which we
denote x0 and x̃0, to which are grafted trees x1, · · · , xl and x̃1, · · · , x̃l. More-
over, it is easy to see that xi = σℓi(x) and x̃i = σℓ̃i

(x̃), where L≥M(x) =

ℓ1 < · · · < ℓl and L≥M(x̃) = ℓ̃1 < · · · < ℓ̃l. By Lemma 4.25, we must
have σℓi(x)

◦
= σℓ̃i

(x̃) and so by induction we have σℓi(x) = σℓ̃i
(x̃).

Now we must show x0 = x̃0. If M = k then both must be equal to
◦k,k → · · · → ◦k,k, where there are l− 1 copies of ◦k,k. IfM < k, then only
one of the leaves ℓi will be labelled by a k-cell, let it be ℓp. This also means
ℓ̃p must be the only leaf in x̃ labelled by a k-cell. Then both x0 and x̃0 must
be equal to ◦k,M → · · · → ◦k,M → ◦M,k → · · · → ◦M,k where we have
p− 1 copies of ◦k,M and l − p copies of ◦M,k.

Proof of Proposition 4.12. We have x, x̃ ∈ TreeO,E
n (C)k, both in normal

form, and x
ϵ
= x̃. By Lemma 4.13, we can assume that x, x̃ contain no

u-labelled vertices. By Lemmas 4.16 and 4.18, we then have x ◦
= x̃ and we

can apply Lemma 4.29 to conclude x = x̃.

Notation 4.30. We denote byN(C) ⊂ TreeO,E
n (C) the n-graded subset con-

sisting of terms in normal form.
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Corollary 4.31. Let C be an n-computad. Then the map

n : Tree
O,E
n (C) → N(C)

sending an equivalence class to its unique representative in normal from is
an inverse to the map N(C) → TreeO,E

n (C) → Tree
O,E
n (C).

Proof. This follows directly from Proposition 4.12.

We record here two important properties of normal forms.

Lemma 4.32. If x is in normal form then any subtree of x is also in normal
form. If ϕ is a map of computads, then ϕ(x) is in normal form if and only if
x is.

Proof. This is clear.

5. Comp is a presheaf category

We now dene a category Celln+1 of computadic cell shapes of dimension≤
n+1, with a fully faithful functor Celln+1 → Compn

n+1, which we ususally
denote Cell → Comp. Then we construct the associated nerve/realization
adjunction

 −  : Psh(Cell) Comp : N⊣

and prove that it is an equivalence of categories.
The main ingredient is Proposition 5.5, which uses normal forms in an

essential way. The rest of the section could probably be shortened by ap-
pealing to the theory of familial representability ([16],[26]). We choose to
present the arguments here for the reader’s convenience, as this does not take
too much space.

Denition 5.1. Denote by the terminal computad. One can dene it in-
ductively by saying that it has exactly one 0-cell and exactly one k-cell x
with s(x) = x0 and t(x) = x1 for each ordered pair (x0, x1) of parallel
(k − 1)-morphisms in Fk−1( ≤k−1).

Notation 5.2. For any computad C, we denote by σ : C → the unique
map of computads.
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We think of the cells in as cell shapes and of the morphisms in the free
n-sesquicategory Fn( ) as unlabelled diagrams. Now we show how one
can associate a computad to each unlabelled diagram.

Denition 5.3. Let k ≤ n and let d ∈ Fn( ) be an unlabelled k-diagram. We
dene a category Comp(d) as follows. Its objects are pairs (C, x), where C
is a computad, x ∈ Fn(C) and Fn(σ)(x) = d. A morphism (C, x) → (D, y)
is a map of computads φ : C → D such that Fn(φ)(x) = y.

Now we show that the category Comp(d) has an initial object. For this
we will need to take colimits in Comp. The following result seems to be
well known, but not having found a suitable reference we include a simple
proof here.

Lemma 5.4. Let T : gSetn → gSetn be a nitary monad and let k ≤ n+ 1.
For each m ≤ k, denote by [−]m : CompT

k → Set the functor taking a
k-computad to its set ofm-cells. Then the following hold:

1. the category CompT
k is cocomplete;

2. each functor [−]m is cocontinuous;

3. the functors [−]m form = 0, · · · , k jointly reect isomorphisms.

Proof. Let Γ : I → CompT
k be a diagram. To prove 1. and 2. we may as

well assumem = k, otherwise we can pass to the underlying diagram ofm-
computads. We construct, by induction on k, a k-computad C which will be
the colimit of this diagram. Dene its set of k-cells to beCk := colimi[Γ(i)]k
and its underlying (k − 1)-computad as C≤k−1 := colimi[Γ(i)]≤k−1. Now
dene source and target maps

s, t : colimi[Γ(i)]k → [Fk−1(colimi[Γ(i)]≤k−1)]k−1

by the composite

Γ(i)k → [Fk−1(Γ(i)≤k−1)]k−1 → colimi[Fk−1(Γ(i)≤k−1)]k−1 →

→ [colimi Fk−1(Γ(i)≤k−1)]k−1 = [Fk−1(colimi Γ(i)≤k−1)]k−1
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where the equality comes from the fact that Fk−1 is left adjoint and the last
arrow is induced by the maps

[Fk−1([Γ(i)]≤k−1)]k−1 → [colimi Fk−1([Γ(i)]≤k−1)]k−1

on sets of (k−1)-morphisms associated to the canonical maps of T -algebras
Fk−1([Γ(i)]≤k−1) → colimi Fk−1([Γ(i)]≤k−1). Now one needs to check that
s, t satisfy globularity and that the construction has the right universal prop-
erty. This is straightforward. Point 3. is easy to prove by induction.

Proposition 5.5. For each unlabelled diagram d ∈ Fn( ) the category
Comp(d) has an initial object, which we denote (d̂, d̃).

Proof. We construct (d̂, d̃) by induction on the dimension of d and on the
height of its normal form.

If d is a 0-diagram then it consists of a single 0-cell. Then d̂ is the 0-
computad with a single 0-cell and d̃ is the diagram consisting of that 0-
cell. Now suppose d consists of a single k-cell. By induction on dimension
and the fact that ss(d) = st(d) and ts(d) = tt(d), we have the following
diagram.

s(d)

s2(d) t2(d)

t(d)

We build d̂ by taking the colimit of this diagram inComp and then adding
a k-cell d̃ : s(d) → t(d). It’s now easy to see, by induction on dimension,
that (d̂, d̃) is an initial object in Comp(d).

Now suppose d has normal form x → ◦i,j ← y. Let m = mini, j and
let x ∩ y = si−m+1(x) = tj−m+1(y). By induction on height and dimension,

138



M. ARAÚJO STRING DIAGRAMS FOR n-SESQUICATEGORIES

we have a diagram

x ∩ y x̂

ŷ

.

We let d̂ be the pushout of this diagram in Comp and

d̃ = (x̃ → ◦i,j ← ỹ),

where we take x̃, ỹ in normal form. Since d is in normal form, so are x
and y, by Lemma 4.32. Therefore, again by Lemma 4.32 and uniqueness of
normal forms, x̃, ỹ map to x, y in TreeO,E

n ( ). Then (x̃ → ◦i,j ← ỹ) maps to
(x → ◦i,j ← y) in TreeO,E

n ( ) and therefore it is in normal form, by Lemma
4.32. Given (C,m) ∈ Comp(d), a map (d̂, d̃) → (C,m) is given by maps
f : x̂ → C and g : y → C such that

(f(x̃) → ◦i,j ← g(ỹ))
ϵ
= m.

Note that the left hand side is already in normal form, by Lemma 4.32. This
means the normal form ofm must be equal to this, by uniqueness of normal
form. This determines f(x̃), g(ỹ) ∈ Fn(C) uniquely, because it determines
their normal forms as the two evident subtrees of the normal form of m.
Then by induction this determines f, g uniquely, so we conclude that (d̂, d̃)
is initial.

Finally suppose d has normal form x → ui. Then take d̂ = x̂ and
d̃ = x̃ → ui.

Remark 5.6. The pair (d̂, d̃) corresponds to what is called a polyplex in
[15] and [26]. In [26], the essential condition for establishing that a certain
class of polygraphs forms a presheaf category is the fact that the groups of
autmorphisms of polyplexes are trivial.

Remark 5.7. In fact, we don’t need normal forms to construct these com-
putads. We only need them to prove that they are initial. One can construct
(x̂, x̃) for any term x ∈ TreeO,E

n ( ≤n) by the same inductive procedure used
above. When x

ϵ
= y is one of the generating equations in En, we obtain an
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isomorphism φ : x̂ → ŷ such that φ(x̃) ϵ
= ỹ by the same generating equa-

tion. This means (d̂, d̃) is well dened up to isomorphism. If x is in normal
form and φ is an automorphism of x̂ such that φ(x̃) ϵ

= x̃, then φ(x̃) = x̃,
as they are both in normal form. This implies φ = id. So in the presence
of normal forms there are no automorphisms, so (d̂, d̃) is well dened up to
unique isomorphism and it is initial in Comp(d).

Example 5.8. It is well known ([31],[17]) that, for n ≥ 2, the category of 3-
computads for the monad T str

n whose algebras are strict n-categories, is not
a presehaf category. This example illustrates why the the above Proposition
fails in this case. Denote by the terminal computad for T str

n and let s :
id∗ ⇒ id∗ be the unique 2-cell in whose source and target are the identity
on the unique 0-cell. We construct a diagram d ∈ F2( )2 consisting of
the vertical composite s ◦ s. Consider (d̂, d̃) ∈ CompT str

n (d) dened by
letting d̂ be the computad consisting of a 0-cell ∗, together with two 2-cells
α, β : id∗ ⇒ id∗, and d̃ the vertical composite α◦β. By the Eckmann-Hilton
argument, we have α ◦ β = β ◦ α, so d̂ admits a nontrivial automorphism
which maps d̃ → d̃, namely the one that permutes α and β. If Comp(d) had
an initial object I , then the unique map I → (d̂, d̃) would be invariant under
composition with this automorphism. This would mean that α, β are not in
the image of the map, so I contains only 0-cells, which is absurd.

In order to show thatComp is a presheaf category, what we actually need
is the fact that Comp(c) has an initial object when c ∈ k is a computadic
cell shape. This will fail for any 3-cell shape whose source or target is the
diagram d above.

Denition 5.9. Let c ∈ n+1 be an (n + 1)-cell shape. We dene Comp(c)
to be the category of pais (C, x) where C is a computad and x ∈ Cn+1 is an
(n+ 1)-cell such that σ(x) = c.

Corollary 5.10. For each k ≤ n + 1 and each k-cell c ∈ k the category
Comp(c) has an initial object, denoted (ĉ, c̃).

Proof. For k ≤ n, this is just Proposition 5.5. For an (n + 1)-cell c, we use
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Proposition 5.5 to construct the diagram

s(c)

s2(c) t2(c)

t(c)

and then we take the colimit and add an (n+ 1)-cell c̃ : s(c) → t(c).

Remark 5.11. The pair (ĉ, c̃) corresponds to what is called a plex in [15]
and [26] or a computope in [30].

Denition 5.12. Let Celln+1 be the category whose objects are cell shapes
c ∈ k for k ≤ n + 1, and where a morphism c → d is a map of computads
ĉ → d̂. We usually denote this simply by Cell. It comes with a fully faithful
functor

(−) : Cell → Comp .

Denition 5.13. We dene the nerve functor

N : Comp → Psh(Cell)

as the composite Comp → Psh(Comp) → Psh(Cell) of the Yoneda embed-
ding with the restriction along (−).

Denition 5.14. We dene the realization functor by the following left Kan
extension, which exists because Comp is cocomplete.

Cell Comp

Psh(Cell)

(−)

Y
|−|
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We thus obtain the usual nerve/realization adjunction

 −  : Psh(Cell) Comp : N⊣ .

Theorem 5.15. The adjunction

 −  : Psh(Celln+1) Compn
n+1 : N

⊣
is an equivalence.

Proof. By [18][Proposition 5.14] it is enough to show that the functors

Comp(c,−) : Comp → Set,

for c ∈ Cell, are cocontinuous and jointly reect isomorphisms. This follows
easily from Lemma 5.4 and the fact that for c ∈ k we have

Comp(c, C) = x ∈ Ck : σ(x) = c,

which follows from Corrollary 5.10.

Remark 5.16. All results in this section hold, with the same proofs, for
any n-globular operad given by generators and relations as long as it ad-
mits a suitable theory of normal forms. More precisely, given a presenta-
tion (G,R) for an n-globular operad, what we need is an n-graded subset
N(C) ⊂ TreeG,Rn (C) of terms in normal form, for each n-computad C, with
the following properties:

1. the induced map N(C) → Tree
G,R
n (C) is an n-graded bijection (i.e.

there is a unique term in normal form in each equivalence class);

2. each subtree of a tree in normal from is in normal form;

3. given a map of n-computads ϕ : C → D, we have ϕ(x) ∈ N(D) if
and only if x ∈ N(C).

Remark 5.17. Because of condition 3. in the previous Remark, it is enough
to dene N( ≤n) for the terminal computad ≤n and then let x ∈ N(C) if
and only if σ(x) ∈ N( ≤n). It is also enough to check condition 2. for the
terminal computad. However, it is not enough to check 1. for ≤n, as one
can have x ̸= y in N(C) such that σ(x) = σ(y).

142



M. ARAÚJO STRING DIAGRAMS FOR n-SESQUICATEGORIES

Remark 5.18. We now describe an alternative approach to showing that
the category of computads for an n-globular operad presented by generators
and relations is a presheaf category. This was inspired by a discussion with
Samuel Mimram about the theory of rewriting.

Denote by ΓG,R
n the free groupoid on the graph with vertices the terms

x ∈ TreeG,Rn ( ≤n) and edges corresponding to the generating equations in
R. In Remark 5.7, we dened a functor (−, −) from ΓG,R

n to the groupoid
whose objects are pairs (C, x) where C is a computad and x ∈ TreeG,Rn (C)
is a term and whose morphisms (C, x) → (D, y) are isomorphisms C → D

such that φ(x) R
= y. This functor is easily seen to be full, so the group of

automorphisms of (x̂, x̃) is a quotient of the group of automorphisms of x.
In order to show that the category of computads for this n-globular operad is
a presheaf category, it is enough to show that the former is trivial. In Remark
5.7 we showed how one can use normal forms to do this.

On the other hand, one can consider the relation on the arrows of ΓG,R
n

obtained by declaring that the application of a generating equation at any
location in a tree commutes with the application of another equation in a
disjoint location. The functor (−, −) respects this relation. If the automor-
phism groups of the quotient of ΓG,R

n by this relation are trivial, then the
associated category of computads is a preseheaf category. It is an interesting
question whether this is true for n-sesquicategories.

More generally, if one can describe a relation on the arrows of ΓG,R
n

which is preserved by (−, −) and such that the automorphism groups of the
quotient of ΓG,R

n by this relation are trivial, this proves that the associated
category of computads is a preseheaf category.

6. String diagrams for n-sesquicategories

Let C be an n-computad for TDs

n . In this section we explain how to asso-
ciate a C-labelled string diagram to each morphism in Fn(C). This is an
extremely useful graphical notation for describing composites and perform-
ing computations in n-sesquicategories. We will in the future extend this to
semistrict n-categories by adding interchangers, which will allow us to apply
in this more general context the techniques used in [2],[3], [4] and [5] (used
there in the context of strict 3 and 4-categories).
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The essential ingredient here is the theory of normal forms, which will
allow us to describe the graphical notation for a term by induction on the
(On, C)-labelled tree corresponding to its normal form.

It is enough to decribe the unlabelled diagrams corresponding to mor-
phisms in Fn( ), since C-labelled diagrams are then obtained by simply
adding labels at appropriate places.

So let w ∈ Fn( )k. We proceed by induction on k and the height of the
normal form of w. When k = 0, the morphism w simply consists of the
unique 0-cell in . The associated diagram is just a point. In general, when
k is odd (resp. even) we depict a generating k-cell w ∈ k by drawing the
(k − 1)-diagram corresponding to its source on the left (resp. top), the one
corresponding to its target on the right (resp. bottom) and then forming a
double cone on this disjoint union. We denote this double cone by drawing
the cone point in the middle and curves connecting each cell in the source
and target diagrams to the cone point. We need to distinguish lines which
correspond to cells of different codimension, which we can do by using dif-
ferent thickness, transparency, dashing or any other method.

Now suppose w = (x → ◦i,j ← y) is in normal form. By induction,
we already know how to draw the diagrams associated to x and y and the
diagram ◦i,j determines how we should compose these two pictures to ob-
tain the picture for w. Finally, if w = (x → uk) in normal form, then we
draw two copies of x and we draw lines connecting generators, again using
a different notation for generators of different codimension.

We now give some examples. First it is useful to recall fom [6] the graph-
ical notation for the generators ◦i,j . We include here the pictures for i, j ≤ 4.

◦1,1 = ◦1,2 = ◦2,1 = ◦2,2 = ◦1,3 =

◦3,1 = ◦2,3 = ◦3,2 = ◦3,3 =

◦1,4 = ◦4,1 = ◦2,4 = ◦4,2 = ◦3,4 =
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◦4,3 = ◦4,4 =

Now we can move on to examples of unlabelled cells and diagrams. The
unique 1-cell in is denoted . The diagram ∗ → u1 is denoted .
The diagram → ◦1,1 ← is denoted . Here are some 2-cells,
with their source and target 1-diagrams.

: →

: →

: →

The 2-diagrams ∗ → u1 → u2 and → u2 are denoted

: → and : → .

Here is a 2-diagram in normal form, then its normal form where we re-
place each generator by its picture and nally the picture of the diagram
itself.

◦2,2

◦2,1

::

◦1,2

dd

>> dd :: ``
= = .

Here are some other 2-diagrams.

Here are some 3-cells with their source and target 2-diagrams.
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: →

: →

: →

: →

: →

Notice how the notation distinguishes the 3-cell above from the
diagram

= ( → ◦3,1 ← ).

Here is a 4-cell with its source and target 3-diagrams.

: →
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